Requirements and Acceptance for Cable and Wire Harness Assemblies

Developed by the IPC Task Group (7-31f) of the Product Assurance Subcommittee (7-30) and the WHMA Industry Technical Guidelines Committee (ITGC)

Users of this publication are encouraged to participate in the development of future revisions.

Contact:

IPC
3000 Lakeside Drive, Suite 309S
Bannockburn, Illinois
60015-1219
Tel 847 615.7100
Fax 847 615.7105

Wiring Harness Manufacturers Assoc.
7500 Flying Cloud Drive, Suite 900
Eden Prairie, Minnesota
55344
Tel 952 835.4180
Fax 952 835.4774
Table of Contents (cont.)

4.4 Wire/Lead Preparation, Tinning

4.5 Wire Insulation

- 4.5.1 Clearance .. 4-11
- 4.5.2 Postsolder Damage 4-13

4.6 Insulation sleeving

4.7 Birdcaged Wire (Soldered)

4.8 Connection Requirements

- 4.8.1 Turret Terminals 4-19
- 4.8.2 Bifurcated Terminals 4-21
- 4.8.2.1 Side Route Attachments 4-21
- 4.8.2.2 Bottom and Top Route Attachments 4-23
- 4.8.2.3 Staked Wires 4-24
- 4.8.3 Slotted Terminals 4-25
- 4.8.4 Pierced/Perforated/Punched Terminals 4-26
- 4.8.5 Hook Terminals 4-27
- 4.8.6 Cup Terminals 4-29
- 4.8.7 Series Connected Terminals 4-30
- 4.8.8 Lead/Wire Placement - AWG 30 and Smaller Diameter Wires 4-31

4.9 Solder Connection

- 4.9.1 Turret Terminals 4-34
- 4.9.2 Bifurcated Terminals 4-35
- 4.9.3 Slotted Terminals 4-37
- 4.9.4 Pierced/Perforated Terminals 4-38
- 4.9.5 Hook Terminals 4-39
- 4.9.6 Cup Terminals 4-40

5 Crimp Terminations (Contacts and Lugs)

5.1 Stamped and Formed - Open Barrel

- 5.1.1 Insulation Support Crimp 5-3
- 5.1.2 Insulation Inspection Window 5-5
- 5.1.3 Conductor Crimp 5-7
- 5.1.4 Crimp Bellmouth 5-9
- 5.1.5 Conductor Brush 5-11
- 5.1.6 Stamped and Formed Carrier Cutoff Tab 5-13

5.2 Stamped and Formed - Closed Barrel

- 5.2.1 Insulation Support Crimp 5-15
- 5.2.2 Conductor Crimp and Bellmouth 5-17

5.3 Machined Contacts

- 5.3.1 Insulation Clearance 5-19
- 5.3.2 Insulation Support Style 5-22
- 5.3.3 Conductor Location 5-23
- 5.3.4 Crimping ... 5-25
- 5.3.5 CMA buildup 5-27

5.4 Termination Ferrule Crimp

6 Insulation Displacement Connection (IDC)

6.1 Mass Termination, Flat Cable

- 6.1.1 End Cutting .. 6-2
- 6.1.2 Notching .. 6-3
- 6.1.3 Planar Ground Plane Removal 6-4
- 6.1.4 Connector Position 6-5
- 6.1.5 Connector Skew & Lateral Position 6-8
- 6.1.6 Retention ... 6-9

6.2 Discrete Wire Termination

- 6.2.1 General .. 6-10
- 6.2.2 Position of Wire 6-11
- 6.2.3 Overhang (Extension) 6-12
- 6.2.4 Wire Holder 6-13
- 6.2.5 Damage in Connection Area 6-15
- 6.2.6 End Connectors 6-16
- 6.2.7 Wiremount Connectors 6-18
- 6.2.8 Subminiature D-Connector (Series Bus Connector) ... 6-19
- 6.2.9 Modular Connectors (RJ Type) 6-21

7 Ultrasonic Welding

7.1 Insulation Clearance

7.2 Weld Nugget

8 Splices

8.1 Soldered Splices

- 8.1.1 Mesh ... 8-2
- 8.1.2 Wrap .. 8-4
- 8.1.3 Hook ... 8-5
- 8.1.4 Lap ... 8-6
- 8.1.4.1 Two or More Conductors 8-7
- 8.1.4.2 Insulation Opening (Window) 8-9
- 8.1.5 Heat Shrinkable Solder Devices 8-11

8.2 Crimped Splices

- 8.2.1 Barrel .. 8-13
- 8.2.2 Double Sided 8-16

8.3 Ultrasonic Weld Splices

9 Connectorization

9.1 Hardware Mounting

- 9.1.1 Jackpost - Height 9-2
- 9.1.2 Jackscrews - Protrusion 9-3
Table of Contents (cont.)

9.2 Strain Relief ... 9-4
9.2.1 Clamp Fit .. 9-4
9.2.2 Wire Dress .. 9-5
9.2.2.1 Straight Approach ... 9-6
9.2.2.2 Side Approach .. 9-7

9.3 Slewing and Boots ... 9-8
9.3.1 Position .. 9-8
9.3.2 Bonding .. 9-9

9.4 Connector Damage .. 9-12
9.4.1 Criteria .. 9-12
9.4.2 Limits - Hard Face - Mating Surface 9-13
9.4.3 Limits - Soft Face - Mating Surface or Rear Seal Area 9-14
9.4.4 Contacts .. 9-15

9.5 Installation of Contacts and Sealing Plugs into Connectors 9-16
9.5.1 Installation of Contacts .. 9-16
9.5.2 Installation of Sealing Plugs 9-18

10 Molding/Potting ... 10-1
10.1 Molding ... 10-2
10.1.1 Mold Fill - Initial .. 10-2
10.1.2 Mold Fill - Final .. 10-4
10.1.3 Mismatch .. 10-8
10.1.4 Blow Through .. 10-9
10.1.5 Terminal/Contact Position 10-10
10.1.6 Fit .. 10-12
10.1.7 Flashing .. 10-14
10.1.8 Cracks, Flow Lines, Chill Marks (Knit Lines) or Weld Lines 10-16
10.1.9 Color .. 10-18
10.1.10 Wire Insulation, Jacket or Slewing Damage 10-18
10.1.11 Curing .. 10-20
10.1.12 Rework .. 10-21

10.2 Potting ... 10-22
10.2.1 Filling .. 10-22
10.2.2 Fit to Wire or Cable 10-23
10.2.3 Curing .. 10-24

11 Cable Assemblies and Wires ... 11-1
11.1 Cable Measuring .. 11-2
11.1.1 Reference Surfaces ... 11-2
11.1.1.1 Straight/Axial Connectors 11-2
11.1.1.2 Right-Angle Connectors 11-2
11.1.2 Length .. 11-3
11.1.3 Breakout .. 11-4
11.2 Wire Measuring .. 11-5
11.2.1 Electrical Terminal Reference Location 11-5
11.2.2 Length .. 11-6

12 Marking/Labeling ... 12-1
12.1 Content .. 12-2
12.2 Legibility .. 12-2
12.3 Permanency .. 12-4
12.4 Location and Orientation .. 12-4
12.5 Functionality .. 12-6
12.6 Marker Sleeve .. 12-7
12.6.1 Wrap Around .. 12-7
12.6.2 Tubular .. 12-9
12.7 Flag Markers .. 12-10
12.7.1 Adhesive .. 12-10
12.7.2 Tie Wrap .. 12-10

13 Coaxial and Twinaxial Cable Assemblies 13-1
13.1 Stripping ... 13-2
13.2 Center Conductor Termination 13-4
13.2.1 Crimp .. 13-4
13.2.2 Solder .. 13-6
13.3 Solder Ferrule Pins .. 13-8
13.3.1 General .. 13-8
13.3.2 Insulation ... 13-10
13.4 Coaxial Connector - Printed Wire Board Mount 13-11
13.5 Coaxial Connector - Center Conductor Length - Right Angle Connector 13-12
13.6 Coaxial Connector - Center Conductor Solder 13-14
13.7 Coaxial Connector - Terminal Cover 13-16
13.7.1 Soldering ... 13-16
13.7.2 Press Fit ... 13-17
13.8 Shield Termination .. 13-18
13.8.1 Clamped Ground Rings 13-18
13.8.2 Crimped Ferrule ... 13-19

Table of Contents (cont.)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.4 Raised Turns Overlap</td>
<td>18-6</td>
</tr>
<tr>
<td>18.5 Connection Position</td>
<td>18-7</td>
</tr>
<tr>
<td>18.6 Wire Dress</td>
<td>18-9</td>
</tr>
<tr>
<td>18.7 Wire Slack</td>
<td>18-10</td>
</tr>
<tr>
<td>18.8 Plating</td>
<td>18-11</td>
</tr>
<tr>
<td>18.9 Damage</td>
<td>18-12</td>
</tr>
<tr>
<td>18.9.1 Insulation</td>
<td>18-12</td>
</tr>
<tr>
<td>18.9.2 Wires and Terminals</td>
<td>18-13</td>
</tr>
<tr>
<td>19 Testing</td>
<td>19-1</td>
</tr>
<tr>
<td>19.1 Nondestructive Tests</td>
<td>19-2</td>
</tr>
<tr>
<td>19.2 Testing After Rework or Repair</td>
<td>19-2</td>
</tr>
<tr>
<td>19.3 Intended Table Usage</td>
<td>19-2</td>
</tr>
<tr>
<td>19.4 Electrical Test</td>
<td>19-3</td>
</tr>
<tr>
<td>19.4.1 Selection</td>
<td>19-3</td>
</tr>
<tr>
<td>19.5 Electrical Test Methods</td>
<td>19-4</td>
</tr>
<tr>
<td>19.5.1 Continuity</td>
<td>19-4</td>
</tr>
<tr>
<td>19.5.2 Shorts</td>
<td>19-5</td>
</tr>
<tr>
<td>19.5.3 Dielectric Withstanding Voltage (DWV)</td>
<td>19-6</td>
</tr>
<tr>
<td>19.5.4 Insulation Resistance (IR)</td>
<td>19-7</td>
</tr>
<tr>
<td>19.5.5 Voltage Standing Wave Ratio (VSWR)</td>
<td>19-8</td>
</tr>
<tr>
<td>19.5.6 Insertion Loss</td>
<td>19-8</td>
</tr>
<tr>
<td>19.5.7 Reflection Coefficient</td>
<td>19-9</td>
</tr>
<tr>
<td>19.5.8 User Defined</td>
<td>19-9</td>
</tr>
<tr>
<td>19.6 Mechanical Tests</td>
<td>19-10</td>
</tr>
<tr>
<td>19.6.1 Selection</td>
<td>19-10</td>
</tr>
<tr>
<td>19.7 Mechanical Test Methods</td>
<td>19-11</td>
</tr>
<tr>
<td>19.7.1 Crimp Height (Dimensional Analysis)</td>
<td>19-11</td>
</tr>
<tr>
<td>19.7.1.1 Terminal Positioning</td>
<td>19-12</td>
</tr>
<tr>
<td>19.7.2 Pull Force (Tensile)</td>
<td>19-13</td>
</tr>
<tr>
<td>19.7.2.1 Without Documented Process Control</td>
<td>19-14</td>
</tr>
<tr>
<td>19.7.3 Crimp Force Monitoring</td>
<td>19-16</td>
</tr>
<tr>
<td>19.7.4 Crimp Tool Qualification</td>
<td>19-16</td>
</tr>
<tr>
<td>19.7.5 Contact Retention Verification</td>
<td>19-16</td>
</tr>
<tr>
<td>19.7.6 Coaxial Shield Pull Force (Tensile)</td>
<td>19-17</td>
</tr>
<tr>
<td>19.7.7 RF Connector Shield Ferrule Torsion</td>
<td>19-18</td>
</tr>
<tr>
<td>19.7.8 User Defined</td>
<td>19-18</td>
</tr>
<tr>
<td>Appendix A Terms and Definitions</td>
<td>A-1</td>
</tr>
<tr>
<td>Appendix B Metric Conversion Table</td>
<td>B-1</td>
</tr>
<tr>
<td>Appendix C Reproducible Test Tables</td>
<td>C-1</td>
</tr>
<tr>
<td>Standard Improvement Form</td>
<td></td>
</tr>
</tbody>
</table>
1 Requirements and Acceptance for Cable and Wire Harness Assemblies

If a conflict occurs between the English and translated versions of this document, the English version will take precedence.

1.1 Scope This standard is a collection of visual, electrical and mechanical quality acceptability requirements for Cable, Wire and Harness Assemblies. It was prepared by the Industry Technical Guidelines Committee of the Wire Harness Manufacturers Association and the Product Assurance Committee of IPC - Association Connecting Electronic Industries. IPC/WHMA-A-620 can be used as a stand-alone document for purchasing products; however it does not specify frequency of in-process inspection or frequency of end product inspection. No limit is placed on the number of process indicators or the number of allowable repair/rewire of defects. Such information should be developed with a statistical process control plan (see IPC-9191).

1.2 Purpose This publication describes tests and acceptability criteria for producing crimped, mechanically secured, or soldered interconnections and the associated lacing/restraining criteria associated with cable and harness assemblies. Any method that produces an assembly conforming to the acceptability requirements described in this standard may be used.

1.3 Approach to This Document The illustrations in this document portray specific points noted in the title of each section. A brief description follows each illustration. The development committee recognizes that different parts of the industry have different definitions for some terms used herein. For the purposes of this document, the terms cable and wire harness are used interchangeably.

Class 3 shall develop and implement a documented process control system. A documented process control system, if established, shall define process control and corrective action limits. This may or may not be a “statistical process control” (SPC) system. The use of “statistical process control” (SPC) is optional and should be based on factors such as design stability, lot size, production quantities, and the needs of the company.

Process control methodologies shall be used in the planning, implementation and evaluation of the manufacturing processes used to produce cables and wire harness assemblies. The philosophy, implementation strategies, tools and techniques may be applied in different sequences depending on the specific company, operation, or variable under consideration to relate process control and capability to end product requirements.

1.4 Shall or Should The word “shall” is used in the text of this document wherever a requirement is mandatory.

Where the word “shall” leads to a hardware defect for at least one class, the requirements for each class are annotated in text boxes located adjacent to that occurrence in the text. When this standard doesn’t provide acceptance criteria for a specific class, the text box will note “Not Est” for that class (see 1.5).

The word “should” reflects recommendations and is used to reflect general industry practices and procedures for guidance only.

1.5 Uncommon or Specialized Designs IPC/WHMA-A-620, as an industry consensus document, cannot address all of the possible product design combinations. However, the standard does provide criteria for commonly used technologies. Where uncommon or specialized technologies are used, it may be necessary to develop unique acceptance criteria. The development of unique criteria should include user involvement or consent and the criteria developed should include an agreed upon definition for acceptance of each characteristic.

Whenever possible, new criteria or criteria on specialized products should be submitted, using the Standard Improvement Form included in this standard, to the IPC Technical Committee to be considered for inclusion in upcoming revisions of this standard.

1.6 Terms and Definitions Terms are consistent with the definitions provided by IPC-T-50. For the understanding of this document, selected definitions pertaining specifically to cable and wire harness manufacturing are listed below and in Appendix A.

Manufacturer (Assembler) – The individual, organization, or company responsible for the assembly process and verification operations necessary to ensure full compliance of assemblies to this standard.

Objective Evidence – Documentation in the form of hard copy, computer data, video, or other media.

Process Control – A system or method to continually steer an operation in reducing variation in the processes or products to meet or exceed the goal in quality and performance.

Supplier – The individual, organization or company which provides to the manufacturer (assembler) components (cables, wires, harnesses and accessories) as specified in this standard.